Transforming Gynecology with Artificial Intelligence: Advances in Clinical Practice

Authors

  • Shaghayegh Mahmoudiandehkordi Isfahan University of Medical Sciences, Isfahan, Iran
  • Maryam Yeganegi Isfahan University of Medical Sciences, Isfahan, Iran

DOI:

https://doi.org/10.54756/IJSAR.2024.25

Keywords:

Artificial Intelligence, Gynecology, Embryo, Pregnancy Complications

Abstract

Artificial Intelligence (AI) revolutionizes gynecology by enhancing diagnosis, prediction, and treatment. This review explores AI applications in early pregnancy complication prediction, fetal health monitoring, gynecological cancers (cervical and ovarian), and embryo selection in IVF. Machine learning models analyze patient data, imaging, and biomarkers to predict risks such as pre-eclampsia, detecting fetal distress, improve cervical cancer screening, and enable early ovarian cancer diagnosis. AI-driven methods for embryo selection automate viability assessment, improving success rates and reducing subjectivity. AI supports evidence-based care by enhancing accuracy and efficiency, though challenges like data privacy and clinical validation remain.

References

Abbasi H, Afrazeh F, Ghasemi Y, Ghasemi F. A Shallow Review of Artificial Intelligence Applications in Brain Disease: Stroke, Alzheimer's, and Aneurysm. International Journal of Applied Data Science in Engineering and Health. 2024 Oct 5;1(2):32-43.

Afrazeh F, Shomalzadeh M. Revolutionizing Arthritis Care with Artificial Intelligence: A Comprehensive Review of Diagnostic, Prognostic, and Treatment Innovations. International Journal of Applied Data Science in Engineering and Health. 2024 Sep 10;1(2):7-17.

Agnew HJ, Kitson SJ, Crosbie EJ. Gynecological malignancies and obesity. Best Practice & Research Clinical Obstetrics & Gynaecology. 2023 Jun 1;88:102337.

Ali AT, Al-Ani O, Al-Ani F. Epidemiology and risk factors for ovarian cancer. Menopause Review/Przegląd Menopauzalny. 2023 Jun 14;22(2):93-104.

Barber EL, Garg R, Persenaire C, Simon M. Natural language processing with machine learning to predict outcomes after ovarian cancer surgery. Gynecologic oncology. 2021 Jan 1;160(1):182-6.

Barnova K, Martinek R, Vilimkova Kahankova R, Jaros R, Snasel V, Mirjalili S. Artificial intelligence and machine learning in electronic fetal monitoring. Archives of Computational Methods in Engineering. 2024 Jan 31:1-32.

Bertini A, Salas R, Chabert S, Sobrevia L, Pardo F. Using machine learning to predict complications in pregnancy: a systematic review. Frontiers in bioengineering and biotechnology. 2022 Jan 19;9:780389.

Chen H, Kim S, Hardie JM, Thirumalaraju P, Gharpure S, Rostamian S, Udayakumar S, Lei Q, Cho G, Kanakasabapathy MK, Shafiee H. Deep learning-assisted sensitive detection of fentanyl using a bubbling-microchip. Lab on a Chip. 2022;22(23):4531-40.

Diakiw SM, Hall JM, VerMilyea M, Lim AY, Quangkananurug W, Chanchamroen S, Bankowski B, Stones R, Storr A, Miller A, Adaniya G. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reproductive biomedicine online. 2022 Dec 1;45(6):1105-17.

Ghasemi F, Minoo S. Dental Imaging Analysis with Artificial Intelligence. Available at SSRN 5008235. 2024 Oct 21.

Glatstein I, Chavez-Badiola A, Curchoe CL. New frontiers in embryo selection. Journal of assisted reproduction and genetics. 2023 Feb;40(2):223-34.

Ghoniem RM, Algarni AD, Refky B, Ewees AA. Multi-modal evolutionary deep learning model for ovarian cancer diagnosis. Symmetry. 2021 Apr 10;13(4):643.

Jiang Y, Wang C, Zhou S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. InSeminars in cancer biology 2023 Sep 30. Academic Press.

Mahmoudiandehkordi S, Yeganegi M, Shomalzadeh M, Ghasemi Y, Kalatehjari M. Enhancing IVF Success: Deep Learning for Accurate Day 3 and Day 5 Embryo Detection from Microscopic Images. International Journal of Applied Data Science in Engineering and Health. 2024 Aug 14;1(1):18-25.

Malani IV SN, Shrivastava D, Raka MS. A comprehensive review of the role of artificial intelligence in obstetrics and gynecology. Cureus. 2023 Feb;15(2).

Minoo S, Ghasemi F. Automated Teeth Disease Classification using Deep Learning Models. International Journal of Applied Data Science in Engineering and Health. 2024 Sep 18;1(2):23-31.

Norouzi F, Machado BL. Predicting Mental Health Outcomes: A Machine Learning Approach to Depression, Anxiety, and Stress. International Journal of Applied Data Science in Engineering and Health. 2024 Oct 31;1(2):98-104.

Orouskhani M, Zhu C, Rostamian S, Zadeh FS, Shafiei M, Orouskhani Y. Alzheimer's disease detection from structural MRI using conditional deep triplet network. Neuroscience Informatics. 2022 Dec 1;2(4):100066.

Pandey B, Pandey DK, Mishra BP, Rhmann W. A comprehensive survey of deep learning in the field of medical imaging and medical natural language processing: Challenges and research directions. Journal of King Saud University-Computer and Information Sciences. 2022 Sep 1;34(8):5083-99.

Perkins RB, Wentzensen N, Guido RS, Schiffman M. Cervical cancer screening: a review. Jama. 2023 Aug 8;330(6):547-58.

Rahmani A, Norouzi F, Machado BL, Ghasemi F. Psychiatric Neurosurgery with Advanced Imaging and Deep Brain Stimulation Techniques. International Research in Medical and Health Sciences. 2024 Nov 1;7(5):63-74.

Seval MM, Varlı B. Current developments in artificial intelligence from obstetrics and gynecology to urogynecology. Frontiers in Medicine. 2023 Feb 23;10:1098205.

Silverwood S, Jeter A, Harrison M. The Promise and Challenges of AI Integration in Ovarian Cancer Screenings. Reproductive Sciences. 2024 May 15:1-4.

Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, Soni S, Wang Q, Wei Q, Xiang Y, Zhao B. Deep learning in clinical natural language processing: a methodical review. Journal of the American Medical Informatics Association. 2020 Mar;27(3):457-70.

Zhong S, Ai C, Ding Y, Tan J, Jin Y, Wang H, Zhang H, Li M, Zhu R, Gu S, Zhang Y. Combining multimodal diffusion-weighted imaging and morphological parameters for detecting lymph node metastasis in cervical cancer. Abdominal Radiology. 2024 Jul 11:1-0.

Downloads

How to Cite

Shaghayegh Mahmoudiandehkordi, & Maryam Yeganegi. (2024). Transforming Gynecology with Artificial Intelligence: Advances in Clinical Practice. International Journal of Scientific and Applied Research (IJSAR), EISSN: 2583-0279, 4(9), 104–112. https://doi.org/10.54756/IJSAR.2024.25