Transfer Learning and Advanced CNN Models for Detecting Brain Tumors using MRI

Authors

  • Hossein Abbasi Islamic Azad University South Tehran Branch, Tehran, Iran

DOI:

https://doi.org/10.54756/IJSAR.2024.24

Keywords:

Brain Tumor Classification, Dense Net, Mobile Net,, MRI, Medical Imaging, Xception

Abstract

This paper explores the efficacy of three advanced deep convolutional neural network (CNN) models; DenseNet, MobileNet, and Xception in classifying brain tumors from MRI scans. Accurate detection and classification of brain tumors are critical for timely medical intervention, and recent advancements in deep learning offer promising tools for this task. We apply each model to a publicly available brain tumor dataset, evaluating their performance in terms of accuracy, sensitivity, specificity, and computational efficiency. The experiments utilize the well-known Brain Tumor Classification dataset, consisting of 3264 MRI images categorized into glioma, meningioma, pituitary tumor, and non-tumor classes. The results demonstrate that each model has unique strengths, with DenseNet showing superior accuracy, MobileNet excelling in computational efficiency, and Xception achieving a balance of both but better than others. The Xception achieved the most suitable performance with an accuracy of 97.6%, sensitivity of 97.9%, precision of 98.5%, specificity of 97.2%, and an F1-score of 97.9%. These results show that Xception excels over other architectures, making it highly effective in classifying abnormal and normal tumors from brain MRI images. Our findings highlight the importance of model selection based on specific clinical requirements and computational constraints and suggest pathways for further research and optimization in medical image analysis.  

References

Abbasi, H., Afrazeh, F., Ghasemi, Y., & Ghasemi, F. (2024). A Shallow Review of Artificial Intelligence Applications in Brain Disease: Stroke, Alzheimer's, and Aneurysm. International Journal of Applied Data Science in Engineering and Health, 1(2), 32-43.

Abbasi, H., Orouskhani, M., Asgari, S., & Zadeh, S. S. (2023). Automatic brain ischemic stroke segmentation with deep learning: A review. Neuroscience Informatics, 100145.

Aboussaleh, I., Riffi, J., Fazazy, K. E., Mahraz, M. A., & Tairi, H. (2023). Efficient U-Net architecture with multiple encoders and attention mechanism decoders for brain tumor segmentation. Diagnostics, 13(5), 872.

Afrazeh, F. (2024). Advances in Imaging Analysis for Understanding Brain Disorders. International Journal of Scientific and Applied Research (IJSAR), eISSN: 2583-0279, 4(8), 1-8.

Afrazeh, F., Ghasemi, Y., Abbasi, H., Rostamian, S., & Shomalzadeh, M. (2024). Neurological Findings Associated with Neuroimaging in COVID-19 Patients: A Systematic Review. International Research in Medical and Health Sciences, 7(3), 1-15.

Ahmmed, S., Podder, P., Mondal, M. R. H., Rahman, S. A., Kannan, S., Hasan, M. J., ... & Prosvirin, A. E. (2023). Enhancing brain tumor classification with transfer learning across multiple classes: An in-depth analysis. BioMedInformatics, 3(4), 1124-1144.

Akhoondinasab, M., Shafaei, Y., Rahmani, A., & Keshavarz, H. (2024). A Machine Learning-Based Model for Breast Volume Prediction Using Preoperative Anthropometric Measurements. Aesthetic Plastic Surgery, 48(3), 243-249.

Akter, A., Nosheen, N., Ahmed, S., Hossain, M., Yousuf, M. A., Almoyad, M. A. A., ... & Moni, M. A. (2024). Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor. Expert Systems with Applications, 238, 122347.

Albalawi, E., Thakur, A., Dorai, D. R., Bhatia Khan, S., Mahesh, T. R., Almusharraf, A., Aurangzeb, K., & Anwar, M. S. (2024). Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach. Frontiers in computational neuroscience, 18, 1418546. https://doi.org/10.3389/fncom.2024.1418546

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of big Data, 8, 1-74.

Asa, S. L., & Ezzat, S. (2009). The pathogenesis of pituitary tumors. Annual Review of Pathology: Mechanisms of Disease, 4(1), 97-126.

Asiri, A. A., Shaf, A., Ali, T., Aamir, M., Usman, A., Irfan, M., ... & Alqhtani, S. M. (2023). Multi-Level Deep Generative Adversarial Networks for Brain Tumor Classification on Magnetic Resonance Images. Intelligent Automation & Soft Computing, 36(1).

Aziz, N., Minallah, N., Frnda, J., Sher, M., Zeeshan, M., & Durrani, A. H. (2024). Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning. PloS one, 19(9), e0307825.

Bhuvaji, S., Kadam, A., Bhumkar, P., Dedge, S., & Kanchan, S. (2020). Brain tumor classification (MRI). Kaggle, 10. [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/1183165

Çetin-Kaya, Y., & Kaya, M. (2024). A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging. Diagnostics, 14(4), 383.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258).

Claus, E. B., Bondy, M. L., Schildkraut, J. M., Wiemels, J. L., Wrensch, M., & Black, P. M. (2005). Epidemiology of intracranial meningioma. Neurosurgery, 57(6), 1088-1095.

Cobilla, R., Dichoso, J. C., Miñon, A. B., Pascual, A. K., Abisado, M., Huyo-a, S. L., & Sampedro, G. A. (2023, February). Classification of the Type of Brain Tumor in MRI Using Xception Model. In 2023 International Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-4). IEEE.

Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control, 57, 101678.

Howard, A. G. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Habiba, S. U., Islam, M. K., Nahar, L., Tasnim, F., Hossain, M. S., & Andersson, K. (2022, October). Brain-DeepNet: a deep learning based classifier for brain tumor detection and classification. In International Conference on Intelligent Computing & Optimization (pp. 550-560). Cham: Springer International Publishing.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).

Kaya, Y., & Gürsoy, E. (2023). A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection. Soft Computing, 27(9), 5521.

Kumar, S., & Kumar, D. (2023). Human brain tumor classification and segmentation using CNN. Multimedia Tools and Applications, 82(5), 7599-7620.

Liu, Y., Zhang, L., Hao, Z., Yang, Z., Wang, S., Zhou, X., & Chang, Q. (2022). An xception model based on residual attention mechanism for the classification of benign and malignant gastric ulcers. Scientific Reports, 12(1), 15365.

Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 131, 803-820.

Mahmoudiandehkordi, S., Yeganegi, M., Shomalzadeh, M., Ghasemi, Y., & Kalatehjari, M. (2024). Enhancing IVF Success: Deep Learning for Accurate Day 3 and Day 5 Embryo Detection from Microscopic Images. International Journal of Applied Data Science in Engineering and Health, 1(1), 18-25.

Mahmud, M. I., Mamun, M., & Abdelgawad, A. (2023). A deep analysis of brain tumor detection from mr images using deep learning networks. Algorithms, 16(4), 176.

Minarno, A. E., Mandiri, M. H. C., Munarko, Y., & Hariyady, H. (2021). Convolutional neural network with hyperparameter tuning for brain tumor classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control.

Minoo, S., & Ghasemi, F. (2024). Automated Teeth Disease Classification using Deep Learning Models. International Journal of Applied Data Science in Engineering and Health, 1(2), 23-31.

Nafissi, N., Heiranizadeh, N., Shirinzadeh-Dastgiri, A., Vakili-Ojarood, M., Naseri, A., Danaei, M., ... & Neamatzadeh12, H. (2024). The Application of Artificial Intelligence in Breast Cancer. EJMO, 8(3), 235-44.

Nancy, A.M., Maheswari, R. Brain tumor segmentation and classification using transfer learning based CNN model with model agnostic concept interpretation. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-20353-1

Norouzi, F., & Machado, B. L. M. S. (2024). Predicting Mental Health Outcomes: A Machine Learning Approach to Depression, Anxiety, and Stress. International Journal of Applied Data Science in Engineering and Health, 1(2), 98-104.

Orouskhani, M., Zhu, C., Rostamian, S., Zadeh, F. S., Shafiei, M., & Orouskhani, Y. (2022). Alzheimer's disease detection from structural MRI using conditional deep triplet network. Neuroscience Informatics, 2(4), 100066.

Rahman, T., & Islam, M. S. (2023). MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26, 100694.

Rajak, P., Jangde, A. S., & Gupta, G. P. (2023). Towards Design of Brain Tumor Detection Framework Using Deep Transfer Learning Techniques. In Convergence of Big Data Technologies and Computational Intelligent Techniques (pp. 90-103). IGI Global.

Reddy, C. K. K., Reddy, P. A., Janapati, H., Assiri, B., Shuaib, M., Alam, S., & Sheneamer, A. (2024). A fine-tuned vision transformer based enhanced multi-class brain tumor classification using MRI scan imagery. Frontiers in oncology, 14, 1400341. https://doi.org/10.3389/fonc.2024.1400341

Sahoo, A. K., Parida, P., Muralibabu, K., & Dash, S. (2023). Efficient simultaneous segmentation and classification of brain tumors from MRI scans using deep learning. Biocybernetics and Biomedical Engineering, 43(3), 616-633.

Samee, N. A., Mahmoud, N. F., Atteia, G., Abdallah, H. A., Alabdulhafith, M., Al-Gaashani, M. S. A. M., Ahmad, S., & Muthanna, M. S. A. (2022). Classification Framework for Medical Diagnosis of Brain Tumor with an Effective Hybrid Transfer Learning Model. Diagnostics (Basel, Switzerland), 12(10), 2541. https://doi.org/10.3390/diagnostics12102541

Sarkar, A., Maniruzzaman, M., Alahe, M. A., & Ahmad, M. (2023). An effective and novel approach for brain tumor classification using AlexNet CNN feature extractor and multiple eminent machine learning classifiers in MRIs. Journal of Sensors, 2023(1), 1224619.

Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Pramanik, M. A. J., Aryal, S., ... & Moni, M. A. (2023). An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning. Expert systems with applications, 230, 120534.

Tandel, G. S., Tiwari, A., Kakde, O. G., Gupta, N., Saba, L., & Suri, J. S. (2023). Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics (Basel, Switzerland), 13(3), 481. https://doi.org/10.3390/diagnostics13030481

Thakur, A., Bhatia Khan, S., Palaiahnakote, S., Kumar V, V., Almusharraf, A., & Mashat, A. (2024). An Adaptive Xception Model for Classification of Brain Tumors.

Zhang, L., Li, W., Shen, L., & Lei, D. (2020). Multilevel dense neural network for pan-sharpening. International Journal of Remote Sensing, 41(18), 7217-7232.

Zhao, R. (2023). Brain tumor identification based on AlexNet and VGG. Highlights in Science, Engineering and Technology, 57, 57-61.

Downloads

How to Cite

Hossein Abbasi. (2024). Transfer Learning and Advanced CNN Models for Detecting Brain Tumors using MRI. International Journal of Scientific and Applied Research (IJSAR), EISSN: 2583-0279, 4(9), 92–103. https://doi.org/10.54756/IJSAR.2024.24